

/

.^

ss ! I

V',

^,

\

\

y

HiUT. USRARiES - DEWEY

M414 V_^ "

MIT LIBRARIES

3 9080 00932 7294

Context Interchange:

A Lattice Based Approach

M.P. Reddy

Amar Gupta

WP#3780 August 1994

PROFIT #94-19

Productivity From Information Technology

"PROHT" Research Initiative

Sloan School of Management

Massachusetts Institute of Technology

Cambridge, MA 02139 USA
(617)253-8584

Fax: (617)258-7579

Copyright Massachusetts Institute of Technology 1994. The research described

herein has been supported (in whole or in part) by the Productivity From Information

Technology (PROFIT) Research Initiative at MIT. This copy is for the exclusive use of

PROFIT sponsor firms.

Productivity From Information Technology
(PROFIT)

The Productivity From Information Technology (PROFIT) Initiative was established

on October 23, 1992 by MIT President Charles Vest and Provost Mark Wrighton "to

study the use of information technology in both the private and public sectors and
to enhance productivity in areas ranging from finance to transportation, and from
manufacturing to telecommunications." At the time of its inception, PROFIT took
over the Composite Information Systems Laboratory and Handwritten Character
Recognition Laboratory. These two laboratories are now involved in research re-

lated to context mediation and imaging respectively.

In addition, PROFFT has undertaken joint efforts with a number of research centers,

laboratories, and programs at MIT, and the results of these efforts are documented
in Discussion Papers published by PROFIT and/or the collaborating MFF entity.

Correspondence can be addressed to:

The "PROFFF" Initiative

Room E5 3-3 10,Mrr
50 Memorial Drive

Cambridge, MA 02142-1247
Tel: (617) 253-8584
Fax: (617) 258-7579
E-Mail: profit@mit.edu

wlASSACHUSETTS INSTlTUTt

OF TECHNOLOGY

MAY 2 6 1995

LIBRARIES

Context Interchange: A Lattice Based Approach

M. P. Reddy* and A. Gupta

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

The level of semantic data interoperability between a source and a receiver is a

function of the context interchamge mech£inism that operates between the source and

the receiver. The senicintic interoperability mechanisms in existing systems are usually

static in nature and cjinnot cope up with changes in the semcintics of data either at the .

source or at the receiver. In this paper, we propose a context interchcinge mechanism,

based on lattice theory which can handle changes in the semantics of data at both the

source cind the receiver. A site-copy selection algorithm is also presented in this paper

which selects the set of sources that can supply semantically mecmingful data to the

query of a particular source.

Keywords: semantic-interoperability, context-interchange, lattice theory,

and query-processing.

1 Introduction

It would not be an exaggeration to claim that data required for any application are available

at some data-source in the world. Data in such data-sources might have different context

than the application context. If it is possible to convert the context of data in the data-source

to the context of an application, then it is less expensive to reuse these data than collecting

the required data for an application from the scratch. Research on data communications has

* Dr. Reddy is now with Kenan Systems Corporation, One Main Street, Cambridge, MA

02142-1517; e-mail:preddy@kenan.com

1

concentrated on the physical obstacles to the reliable transfer of data between a source and

a receiver, but rarely on issues such as the mismatch between the context of data-source and

the context of the data-receiver.

What exactly constitutes the context is difficult to answer [Lyo81]. The concept of

context has been addressed in many areas such as sensory process, perception, language,

concept learning, reccJl and recognition [Bur52, Coe77, Tho88]. The main reason for the

context assuming a central role in these areas is that objects and their associated events

constitute an integral part of their environment and cannot be understood in isolation of that

environment. In this paper we do not attempt to give precise definition for this term, even

though this is part of our long term research objective. We assume that context knowledge

of a data item is a triple given by the semantic knowledge of the data, the organization of

the data, and the quality parameters of the data. In this paper, we concentrate only on the

semantic component of the context, which is formedly defined in Section 3.

Consider the process by which a financial analyst accesses the prices for shares of a

particular company. He or she needs to gather information from severed stock exchanges

located in different nations and must overcome semantic discrepencies at multiple levels: the

stock prices are stated in different currencies, the currencies are floating with respect to each

other; the stock price may be the latest-price or the closing-price; etc. Such semantics are

implicit in many existing databases. Unless these semantics are made explicit, it is difficult

to identify and resolve underlying semamtic incompatibilities. The fundamental question is

how to make such semantics explicit and how to quickly identify the incompatibilities and

resolve them if possible.

A number of researchers [LR82, Tem89, DAT87, Ke88, RJPS89, BT84] have proposed

solutions that aim to identify semantic incompatibilities during the process of schema inte-

gration. In this scenario, every application defines its own views on the integrated schema

and these views are used to translate the semantics of the integrated schema into application

semantics. In this approach, the semsmtics of data in a database are first tratnslated into the

semantics of the integrated schema and then translated into the semantics of the applica-

tion. This strategy is expensive if any changes occurs in the semantics of the data that is

being integrated. In [SM91], a rule-based approach was proposed in which these semantic

differences are dynamically identified and resolved using the context information associated

with the data items required by an application. In this approach, the semantics of data in a

database can be directly translated into the semantics of the application. In this paper, we

extend this model with a lattice-based representation for the context knowledge. We believe

that the lattice representation is more natural for representing the context knowledge and

for cross comparison.

Our context interchange scenario is shown in Figure 1. This scenario consists of a set

of applications, a set of data sources, and a context mediator. Each application or data-

source is associated with a Context Data Repository (CDR), which explicitly specifies the

context of each concept relevant to it from its point of view. Whenever an application

requests for data, the context mediator ensures that the application receives semantically

meaningful data from various data sources (if it is possible). As such, the context mediator

must possess the capability to reason with different contexts (i.e., with different CDRs)

simultaneously. The representation scheme of context in each CDR can enable the context

mediator to simultaneously reason with different CDRs. This imposes a need for systematic

description of context knowledge of application requirements and the context knowledge

of data-sources; we have adopted the lattice model for such representation based on the

following considerations:

• A databzise can supply meaningful data to an application provided the database context

is more general than the application context. The more general than relation can be

elegantly modeled using the Lattice model. In a lattice, the context becomes more

specific as one moves upward and more generalized as one moves downward.

• Context knowledge can be economically represented in the form of a lattice as the

knowledge present at a pcirticular context, which can be shared by all contexts which

are more specific than that context.

• Reasoning with context knowledge in the form of a lattice is economical because an

application receives meaningful solution from all data sources which are in a more

generalized context than the application, and the more general than relation is easy to

trace in a lattice.

Within the lattice based context interchange framework, conditions under which a data

source can supply semanticaJly meaningful data to address an application's data requirements

are derived in this paper. We have proposed a context driven site-copy selection algorithm,

which selects various candidate data-sources that can supply meaningful data to queries

initiated by different applications.

This paper is organized as follows: Section 2 presents a brief overview of representation

schemes for the context knowledge. The approach selected in this paper for representing

context knowledge is presented in Section 3. In Section 4, a mechanism to describe context

data repository for databeises and their applications is discussed. A procedure for context

mediation is presented in Section 5. Query processing and associated issues are discussed in

Section 6. The last section contains our conclusions.

2 Lattice-based Representation of Context

The concept of context has been treated from different perspective by various researchers.

For example, the Truth Maintenance System (TMS) [Doy89] <ind the Assumption-based

Truth Maintenance System (ATMS)[dK86a] have adopted different representation schemes

for representing the notion of context. In TMS, each datum is labeled either IN or OUT,

as determined by the given boundary condition. The notion of context is implicit in the

boundary conditions and aU the data items which are believed to be true in that context

are labelled IN and all the data items which are not believed to be true in that context

are labelled OUT. The context changes only when one of the boundairy conditions changes.

As such, TMS maintains only one context (global context) at any given point of time.

In contrast, ATMS provides all the contexts in which the data item are believed and can

represent multiple contexts simultaneously. The computational advantages of ATMS are

discussed in [McD83, dK86a, dK86b, dK86c]. The context interchange problem is somewhat

closer to that of ATMS as the context-mediator needs to interact and reason with multiple

Figure 1: Context Interchange Scenario

contexts simultaneously.

2.1 Notation and Definitions

Let X and Y represent the context knowledge about a concept from two different viewpoints.

Five possible relations can exist among X and Y, as follows:

(i) X = Y ; X and Y are in the same context.

(ii) X C Y ; X is a more generalized context than Y.

(iii) X D Y ; X is a more specific context than Y.

(iv) X n Y 7^ and (i), (ii), or (iii) are not satisfied; X and Y possess some context

in common.

(v) X n Y =
;
X and Y are totally disjoint contexts.

Two contexts are comparable if either (i), (ii) or (iii) is satisfied. Therefore one can define

only partial order among the set of contexts using the relation C and form a context-lattice.

A lattice is a partially ordered set, with X C Y meaning XflY — X and XuY=Y, in which

each pair of elements possesses a greatest lower bound and a least upper bound within the

set. If X C Y then one says that X is as general context as context Y [Sho91].

A context alone is not interesting; it is interesting only when it is linked with all asser-

tions which are true in that context. Contexts can be viewed as envelopes enclosing some

assertions. If an assertion A is true in the context X then this information is represented as

A^ . This assertion may be true in one context <ind untrue in another context. If A^ is valid

and if y C X then A^ is also vjJid. In other words, if an assertion A is true in a particular

context, say X, then it is true in all contexts which are more general than X. This is the

basis for the context interchjinge mechanism presented in this paper.

3 Semantic Assertions and Context-Knowledge

Each data-source is visualized as a set of distinct object types and each object is an aggrega-

tion of a set of properties. We categorize properties into two clttsses: primitive properties and

non-primitive properties. Semantics of primitive properties are the same across all appUca-

tions and data sources, whereas the semantics of a non-primitive property may be different

for different applications and at different data sources. The semantics of a non-primitive

property are captured through a context-assertion lattice.

The context-assertion domain of a property is the set of contexts relevant to the property

and a set of assertions which may be true in each context. The context-assertion domain of a

property is given by the context-assertion lattice of the property. This lattice is constructed

from the context lattice and the semantic-assertions domain. The context lattice, the se-

mantic assertion domain, and the context assertion lattice are described in the following

subsections.

3.1 Context-Lattice

As mentioned earlier, the semantics of any property cannot be understood in isolation of

the environment/context in which it is intended to be used. In other words, the envi-

ronment/context associated with a property functionally determines the semantics of the

property. As observed in [SSR92], the environment of a property can be occasioncdly de-

termined by other properties of the object. These properties are collectively referred to as

the environment schema of the non-primitive property. The environment schema needs to

be tagged whenever a non-primitive property is moved from one environment to another.

The set of all possible environments/contexts in which the property is defined is called the

context domain of the property. The context domziin of a property is represented by the

context lattice.

Let Environment(P) denote the environment scheme of a non-primitive property P. Let

Ej be a property in Environment(P). Let Dom{Ej) be the domain or the set of legal val-

ues associated with Ej. The assignment of each Cj € Dom(f^j) to the property Ej sets a

different context for the non-primitive property P. For example, let Dom(Instrument-type)

be { Equity, Future } and Dom(Exchange) be {Nyse, Tokyo }. Assignment of Equity to

Instrument-type sets a particulaj context to property Trade-price, whereas the assignment

of Future to Instrument-type sets another context to the property Trade-price. Different

contexts associated with the property Trade-price in the excimple are shown in Table-1.

Table-

1

|A:»;€,Qi

fA3lCi.p^

T>'f^*i. {AX} {A.

{}

Figure 2: Context-lattice of Trade-price (Refer to Table- 1 for definitions of A through D)

In some context, say 'X', the meta-property MP, may have a meta- value MVi; in another

context, it may have a meta-value MV2 and so on. For example, the meta-value of currency

may be Dollars in one context and Yens in another context. This implies that two semantic

assertions are possible for the meta-property Currency. Similarly, if one assumes that Meta-

Values(Status) is given by { 'Latest-price', 'Closing-price' }, then semantic assertions for

'Trade-price' will be as shown in Table-2.

Table-2

3.3 Context-Assertion Lattice of a Non-primitive Property

The context-assertion lattice of a property is generated by the cross-product of the context-

lattice and the semantic assertion domain. Therefore, the context-assertion lattice couples

the contexts of a property with its associated assertions. As an example, the context-assertion

lattice of Trade-price is as shown in Figure 3.

A node n, in the context-assertion lattice is a pair denoted by (i,,y,). The first co-ordinate

projection (denoted by PJ\) is called the context co-ordinate and the second co-ordinate

projection (denoted by PJ2) is Ccilled the semantic co-ordinate. These two co-ordinates are

defined as follows:

PJi{n,) -^ Xi

PJ2{n,) -^ yi

The relations C and D among two nodes rig and nj in the context-lattice are defined as

follows:

"a Q "d provided PJ\{na) C PJi{nd) and PJ2("a) = PJiind)-

ria D n<J provided PJ\{na) D PJ\{nd) and PJzina) — •P./2(^d)-

Given any two nodes, Ua and n^ in the context-assertion lattice, one can define three relations

as follows:

Total context-lift: The context of node n^ can be totally lifted to the context of node rio,

provided 714 C ng.

Partial context-lift: The context of node n^ can be partially lifted to the context of a

node rio, whenever n^ D no.

No context-lift: The context of node n^ cannot be lifted to another node Ua, if the context

of nj cajinot be either totally or partially lifted to the context of rig.

Node Equivalence: Given a node nj in the context-assertion lattice, we define a node-

equivalence class denoted by [nj] as follows:

[nj] = { Tio
I

rio is in the context- assertion lattice amd PJi(nj) = PJi{na) and PJ2{'"-d)

is convertible to PJ\{na) }

11

If the context of any node Uk G [
nj] can be lifted to the context of n^ then every node

^/ 6 [n<i] can be lifted to the context of n^.

The context and its associated semantic assertions of any instance of P can be given by one

of the nodes of the context-assertion lattice. Our model requires a context-assertion lattice

for each non-primitive property that is being shared (interoperable) among applications and

data-sources. The use of context-assertion lattice in describing the context knowledge of a

data-source or an application is discussed in the next section.

4 Context Definition Repository

In the proposed context interchange architecture, each data-source or application needs

to have a Context Definition Repository(CDR). Semantic assertions and their associated

contexts for each and every non-primitive property of a data source collectively constitute

the CDR for the data-source. Similar definition holds for an application's CDR.

Consider a database, dbl, which supplies the instance values of the property Trade-

price. Assume that the instances of Trade-price are defined in three different contexts,

namely Cl, C2, and C3. The context CI is defined by Instrument-type = 'Equity' and

Exchange = 'Nyse', the context C2 is defined by Exchange = 'Tokyo', and the context C3

is defined by Instrument-type = 'Future'. Let the semantic assertions Status= 'latest-price'

and Currency = 'DoUars' are true in context Cl, and Status = 'Closing-price' and Currency

= 'Yens' are true in C2, and finally Status = 'Closing-price' and Currency= 'Dollars' are

true in context C3. These contexts Cl, C2, C3 and their respective semantic assertions can

be mapped to nodes n21, n20, and n9 respectively in the context assertion lattice of property

Trade-price. The collection of all contexts and semantic assertions which are true in these

contexts for a non-primitive property in a particular data-source forms the characterizing

environment for the non-primitive property at that particular data-source. Now one can

define the characterizing environment of the Trade-price in the data-source dbl cis:

7f,U-pr.c. = {"21, n20, n9}

As such, the context data repository of a data-source can be described by defining the

12

•o 3 ••

rj
(0 u^

e g

(9

«M . y

l< if

e s

" ^ I

at (9

(M E
Sif

N. O
,'~|

10 z
«2

^i?r

/" i^-J

- gMas
e t: u— 83
513

i isri
1 r

4)

c4

V

(4

a
o

V
OS
CO
ca

•>
X
u
•»
C3
O

«

characterizing environments for each and every non-primitive property that can be supplied.

The collection of such characterizing environments, one for each non-primitive property

relevant to a data-source forms the Context Definition Repository (CDR) for that data-

source. Similarly, the characterizing environments for each and every non-primitive property

required for the application constitute the Context Definition Repository (CDR) for that

application.

5 Context Comparison

One aim of context comparison is to ensure that applications receive only meaningful data

from data-sources. To accomplish this, the query processor must analyze the query, identify

all the relevant nodes in the CDR of the application, compare these nodes with the nodes

in the CDRs' of data sources, and identify potential sources which can supply meaningful

data to the application. Checking for these relations at run-time, that is during the query

evaluation time implies more burden on the query processor. Therefore, the context compar-

ison task is ideally delegated to context-mediator. The context-mediator can make certain

comparisons in advance and the query-processor can utilize the results of these comparisons

at query evaluation time.

In this scenario, the goal of context-mediator can be conceptually outlined. The context-

mediator is provided with a set of CDRs of databases and applications. The task of the

context-mediator is to efficiently determine the subset of databases whose context can be

lifted to an application's context. Efficiency can be achieved by taking advantage of two

important factors. First, the context-mediator can be supplied with changes in the CDR

of the relevant application or database, allowing the context-mediation process to be incre-

mentttl, with updates for the chamged contexts only. Second, the query-processor usuadly

needs to know only which data-source can supply meaningful data to an application's query,

and only rarely the contents of CDR of a data-source. The context mediator can therefore

be constructed as an intermediate data structure which can make very rapid comparisons

of contexts. This data structure must also help the context-mediator in identifying and

14

correcting the pre-compiled comparisons, whenever changes are made to the existing CDRs.

The context-mediator associates every node in the context-assertion lattice with two lists:

a Source-list and a Consumer-list. A Source-list states all the databases which contain

the same node in their respective CDRs. An consumer-list states all the applications which

are having the same node in their respective CDRs. These lists are the same for all equivalent

nodes in the context-assertion lattice.

To demonstrate context comparison, consider three applications apl, ap2, and ap3, whose

data requirements span over data-sources dbl, db2, and db2. Assume that applications apl,

ap2, and ap3 require the instances of the non-primitive property 'Trade-price' in different

contexts and further that 'Trade-price' is available in dbl, db2, and db3 in different contexts.

The semantics of 'Trade-price' in different applications and in different databases are given

by characterizing environments in their respective CDRs.

7f.U-p,.« = {"21, n20, n9}

7f.l<^-p,.„ - {n20, n22}

iTride-prrce = ("21, n32}

7rrL-pr.ce = {"21, 7x33}

7rr!de-pr.« = {"13}

Consider the context-zissertion lattice for 'Trade-price' shown in Figure 3. Using the

above given characterizing environments of 'Trade-price', source-list and consumer-list for

each node in the context- assertion lattice can be constructed. As an example, consider node

n21 in the context-assertion lattice of 'Trade-price'. The element dbl is entered into the

Source-list and elements apl and ap2 are entered into the Consumef-list of the node n21.

The same source-list and consumer-list will be attached to adl nodes which are eqiiivalent

to n21, i.e., nodes like n23. In Figure 3, for each node, an arrow that is leaving the node

with broken line shows the source-list and the consumer-list associated with the node. For

simplicity, only non-empty source and consumer lists are shown in this figure.

With the help of Source-list and Consumer-list, the context mediator can identify poten-

tial sources which can provide semanticsdly meaningful solution to am application's query.

15

The context mediator will become a performance bottleneck if every application needs to

consult the context mediator for each of its queries. To avoid this performance bottleneck,

the context-mediator is envisaged to distribute the required knowledge of context mediation

among CDRs' of applications. Every node in the CDR of an application is augmented with

two disjoint Usts, namely Total-Suppliers-List and Particd-Supphers-List. The derivation of

Total-Suppliers- List and Partial-Suppliers-List is discussed in the following paragraphs.

Total-Suppliers-lists: The total-supplier-list contains all the data-source nodes whose con-

text can be totally lifted to the context of an application node. The union of Source-lists

associated with each node present in each chain and reaching a particular application node

in the context assertion lattice forms the Total-suppliers-list for the application node. These

chains aJso include the application node

Partial-Suppliers-list: The Pajtial-Supplier-List gives all the data-source nodes which

can only be particdly lifted to the application node. The union of Source-lists of each node

present in each chain leaving the application node in the context assertion lattice forms the

Partial-Support-List for the application node. These chains exclude the application node.

Consider node n21 in the CDR of application apl. There are two chcdns reaching this

node in the context assertion lattice, namely {n21, nl3, nl, nO} and {n21, n5, nl, nO}. The

union of source-lists of jdl nodes in these chains is { dbl }. Therefore the Total-Suppliers-List

of n21 of application apl will be { dbl }. Since there aie no chains leaving n21, the Partial-

Support-List of n2I in the CDR of apl will be empty. Similarly, for node n32, there are two

chains reaching this node, namely { n32, n20, n4, nO }. Therefore the Total-Support-List of

n32 will be { dbl, db2 }, and since there are no chains leaving n21, the Partial-Suppliers-List

will be empty.

In this scenario, an application can determine the list of potential sources which can

supply semantically meaningful solution to its query.

iT'r'a^-^.c. = {{n2l{dbl}{}), {n22{dbl,db2}{})}

If the application needs data related to 'Trade-price' in the context n21 then it will select

dbl, however, if the 'Trade-price' data needed tire in the context n32 then either dbl or db2

is selected.

16

Similarly, one can write the characterizing environments of Trade-price in api and ap2 with

Total-Suppliers-lists and Partial-Suppliers-lists.

7t^:..-p..„ = {{n22{dbl}{}), (n34{ dbl}{ })}{db\}

frrl.-^,.. = {{nlH}{dbl,db3})}{}

From the above characterizing environments, applications ap2 and ap3 can select data-

sources which are compatible to the required context of the property 'Trade-price'.

The issue that still needs to be addressed is the process of ensuring the correctness of

Total-Suppliers-list and Partial-Suppliers-lists that are distributed among CDRs of several

applications, in the event of changes in semantics either at data source level or at application

level. This issue is addressed in the next subsection.

5.1 Integrity of Semantic Mappings

Semantics of a non-primitive property can change either at an application or at a data

source. A mechanism to cope with changes in the semantics of a non-primitive property in

the proposed context interchange architecture is discussed in the following paragraphs.

Changes in Application Data Semantic: Whenever the semantics of a non primitive

property in an application chsinge, these changes must be reported to the context media-

tor. The context mediator updates consumer-lists of affected nodes in the context assertion

lattice and using this context assertion lattice generates a new list of Total-Suppliers-lists

and Partial-Suppliers-lists for all new nodes in the characterizing environment of the non-

primitive property in CDR of the application. The application should not request for data

related to the non-primitive property until the context mediator returns a new set of Toted-

Suppliers-lists and Partial-Suppliers-lists to the set of new nodes entered into the application

CDR.

Changes in Data Source's Data Semantics: Whenever the semantics of a non primitive

property at a data source chsmge, such chsmges will be reported to the context mediator. The

context mediator updates source-lists of nodes in the context assertion lattice corresponding

to the old and new contexts of the non-primitive property. Concurrently, the context medi-

ator identifies the set of affected applications using consumer-lists attached to nodes in the

17

context assertion lattice, evaluates new Total-Suppliers-lists and Partial-Suppliers-lists, and

updates the CDR of each affected application. If a data-source changes the semantics of a

non-primitive property, then it should not allow any application to access this property until

the context mediator resolves all semantic mismatches by updating the CDRs of all affected

applications.

In the above discussion, a mechanism for semantic interoperability between an application

and a data-source with respect to a single non-primitive property is discussed. In fact, an

application query may consist of one or more non-primitive properties and may have some

primitive properties. In such a situation, identification of data-sources which can supply

a semantically meaningful solution to an application query in a cost-effective manner is a

challenging ta^k. In the following section, we proposed an algorithm to identify a set of

data-sources which can supply semantically meaningful data to an application query.

6 Query Processing

An application generates a query based on its data requirements. Each query consists of two

parts: the target part and the qualification part. An application query can be interpreted as a

request for the instances of the target properties within the context given by the qualification

of the query. The semantics of the properties referred to in the query can be determined

by the CDR of the qualification of the query. Therefore, one needs to identify semantic

assertions which are true in the context given by the qualification part of the query and the

CDR of the application.

The context of a non-primitive property in the query can be defined only if the query

is well-formed at the application. We define a query to be well-formed with respect to a

non-primitive property at an application, if the semantics of the non-primitive property in

the query is derivable from the qualification of the query and the CDR of the application.

In other words, the quaJification of the query must be complete enough to determine the

semantic assertions of a non primitive property referred to in the query. A well-formed

query with respect to a non-primitive property at a data source can be defined in a similar

18

manner. Once semantic assertions of properties referred to in the query are determined,

then the query processor identifies a set of sites which can supply semantically meaningful

solution to the query. In the following subsection, we provide an algorithm to identify a set

of such sites.

6.1 Site-selection Algorithm

The process of site-copy selection is a mechanism for selecting a set of data sources for

processing a given query if more than one candidate set are available. The site-copy selection

algorithm in MERMAID [Te87] concentrated on optimization of query execution cost and

did not consider semantic heterogeneity aspects during the selection of processing sites, which

are instead resolved by the integrated schema in MERMAID architecture. The MERMAID

algorithm selects the set consisting of the minimum number of sites to process the query

out of all possible sets of candidate sites. The rationale behind the minimum number of

sites is that, in general, the data communication requirements are likely to be minimum if

the number sites involved in the query processing are minimum, which in turn reduces the

overall query processing cost. Since there is no integrated schema in our context interchange

architecture, the Site-copy selection algorithm must deal with semantic heterogeneity issues.

The algorithm below consideres such issues during the selection of processing sites.

The following algorithm selects a set of candidate sites for a given query which can supply

meaningful solution to the query. The Total-Suppliers-List and Pcirtial-Suppliers-List used

in the following algorithm are defined in the previous section.

Candidate-sites(query, CDR(application))

{

Let P be the set of primitive properties and X be the set of non-primitive

properties referred to in the query;

/* see Example- 1 and Example-2 below */

For each pi € P, let SPi be the set of data-sources where pi is available;

Represent SPx in disjunctive normal form.

For each Xj £ X , whose context is given by n,^

19

/* see Example- 1 below */

{ if total-suppliers list of n^ is not empty

{ let SXj denote the Totcd-Suppliers-List of n^
;

Represent SXj in disjunctive normal form }

/* see Example- 2 below */

else if Partial-Suppliers-List of n^ is not empty

{ let SXj denote the collection of Particd-Support-List of n^
;

Represent each Sji € SXj in disjunctive normal form

and assign their conjunction to SXj }

}

Set Candidate-Sites to [Mp^^pSPi) A {\/j,^^xSXj)\

Translate the expression Candidate- Sites into disjunctive normal form;

select the conjective term from Candidate-Sites which heis minimum number of sites

and if more than one such term exists then select any one of them

and return the selected term.

}

Examples:

The following examples illustrate the selection of candidate sites to process a given query

by taking semantic heterogeneity issues into consideration.

Example- 1: Assume that the following query is received from the application apl.

Select Trade-price

Where (Elxchange=Nyse and Instrument-type=Equity).

The query is well-formed at the application apl.

P = { Exchange, Instrument-type }

X = { Trade- price }

SPsxchanae = dbl V db2 V dbZ

SPlnstrument-Type = ^bl V db2 V db3

SXxrade- price = dbl

20

Ceindidate sources for processing the complete subquery is given by

(dbl V db2 V db3) A {dbl V db2 V db3) A (dbl)

The above expression is translated into disjunctive normal form as follows:

(dbl) V {dbl A db2) V {dbl A db3) V ((f6l A db2 A </63)

Since the first disjunction has minimum number of elements, Data-source dbl wiU be

selected to process the query.

Example-2: Assume application ap3 uses the query:

Select Trade-price

Where Exchange=Nyse

The query is well-formed at the application ap3.

P= { Exchange }

X = { Trade-price }

SPsxchange = dbl V db2 V dbZ

Since, Trade-price in the application ap3 has no complete solution at any single data-

source. It hcis only partial solution at dbl and at db3.

SXTrade-pr^ce = {dbl) A {db3)

Candidate sites to process the query is given by

{dbl V db2 V dbZ) A {{dbl) A {dbZ))

The above expression is translated into disjunctive normal form as follows:

{dbl A dbZ) V {db2 A dbl A dbZ)

Data-sources, dbl amd db3 c&n be selected to process the query.

7 Conclusion

In this paper, we provided a lattice-based framework for the description of context knowledge

for data-sources and applications. Since hierarchical nature is implicit among disparate

contexts, the lattice model is ideally suited for the required representation. Our approach

requires that a context data repository(CDR) of an application and another of a data-source

be generated from the given set of context-lattices. In other words, all CDRs must share the

21

same set of context-lattices. Context comparison and context evolution tasks can be handled

efficiently using the lattice model. The lattice technique for representing context knowledge

is more appropriate since it involves only set operations for their context comparison, unlike

as rule based representation which uses inference mechanism to perform context comparison.

The context-assertion lattice presents a set of legal contexts and associated assertions

which can be used as a reference set for a Database Administrator or an application developer

to frame his or her CDRs. If the application developer has the option to choose between

semantic assertions then he or she can use the existing context-assertion lattice to identify

what kind of assertion would receive greater database support. Similarly a database designer

can use the context-assertion lattice to fix semantic assertions in his or her data so that they

can be utilized meaningfiilly by many applications.

Our model is powerful enough to accommodate semantic conversions during context

interchange through the notion of node equivalence. If two nodes in a context assertion lattice

are equivalent then all applications associated with one of the nodes can get semantically

meaningful data from the data sources associated with the other node and vice versa.

We also derived conditions under which a source can supply meaningful data to an

application. Under these conditions, the context-mediator maintains the consistency of the

knowledge present in the application as well as the data-source CDRs. The Query-processor,

using the knowledge present in the CDR of the application, can identify a set of data-sources

which can supply me!Lningful solution to the application query. As such, the roles of context-

mediator and the query-processor are separated. A context driven data-source selection

algorithm for a given application query was also described.

Since the storage requirement for each context-assertion lattice can be large, the lattice

must be pruned to its minimum size before it is physically stored. All nodes in a context-

assertion lattice, which <ire not present in any CDR can be pruned from the lattice. Since the

lattice is a directed acyclic graph, well defined storage representation schemes ajid algorithms

to include a given node into the lattice and to search for a required node in the lattice are

available.

Acknowledgments: The authors thank anonymous reviewers for their detailed suggestions.

22

M. P. Reddy recently joined Kenan Systems as a database architect. Earlier, he worked

as Research Associate at the Sloan School of Management, Massachusetts Institute of Tech-

nology from 1991 November through 1994 January. He received his doctorate in computer

science and masters in physics from the University of Hyderabad, Hyderabad, India. Prior to

joining MIT, he worked as an Assistant Professor at the University of Hyderabad. At MIT,

Dr. Reddy was active in several research projects at the Composite Information Systems

Laboratory. He has published several articles in the areas of heterogeneous databases and

data quality management. His current research interests include integration of heteroge-

neous databases, context interchange among heterogeneous information systems, knowledge

discovery in databases, data quality management, and multidimensional databases.

A. Gupta is Co- Director of MIT's Productivity from Information Technology (PROFIT)

Initiative and the first and ordy Senior Research Scientist at the Sloan School of Management,

Massachusetts Institute of Technology. He received his Ph. D. in computer science from the

Indian Institute of Technology, New Delhi, a masters degree in management from MIT and

a Bachelors degree in electrical engineering from the Indian Institute of Technology, Kanpur.

Dr. Gupta serves on the Administrative Committee of the IEEE Industrial Electronics

Society and has been assistant chcdrman for several lECON conferences.

Since joining MIT in 1979, he has been active in the areas of multiprocessor architectures,

distributed and heterogeneous databaise systems, and automated reading of handwritten

information. He has published more than 100 technical articles and papers, and produced

seven books in these areas. He serves as an advisor to a number of leading internationzd

organizations.

References

[BT84] Y. J. Breitbart and L. R. Tieman. ADDS-heterogeneous distributed database

system. In Proceedings of Third International Seminar on Distributed Database

Systems, March 1984.

23

[Bur52] E. Burnswick, editor. The Conceptual Framework of Psychology. University of

Chicago Press, Chicago, 1952.

[Coe77] T. R. Coe, W. C. Sarbin. Hypnosis from the standpoint of a contextualist. Annals

of the New York Academy of Science, 296, 1977.

[DAT87] S. M. Deen, R. R. Amin, and M. C. Taylor. Implementation of a prototype for

PRECI*. Computer Journal, 30(2), 1987.

[dK86a] J. de Kleer. An assumption based TMS. Artificial Intelligence, 28, 1986.

[dK86b] J. de Kleer. Extending the ATMS. Artificial Intelligence, 28, 1986.

[dK86c] J. de Kleer. Problem Solving with ATMS. Artificial Intelligence, 28, 1986.

[Doy89] R. Doyle. A Truth Maintenance System. Artificial Intelligence, 12, 1989.

[Ke88] V. Krishnamurthy and et al. IMDAS- An integrated manufacturing data admin-

istration system. Data and Knowledge Engineering, 3, 1988.

[LR82] T. Landers and R. Rosenberg. An overview of MULTIBASE. In Distributed Data

Bases, pages 153-183. North Holland, 1982.

[Lyo81] J Lyons, editor. Language, Meaning and Context. Fontzma Paperbacks, Great

Britain, 1981.

[McD83] D. V. McDermott. Contexts and Data Dependencies: A Synthesis. IEEE Trans-

actions on Patteren Analysis and Machine Intelligence, 5, 1983.

[RJPS89] M. Rajinikanth, G. Jakobson, and G. Piatetsky-Shapiro. On heterogeneous

database integration: One year experience in evaluating CALIDA. In Proceed-

ings of Workshop on Heterogeneous Databases, December 1989.

[Sho9l] Y. Shohami. Varieties of Context. In Vladimir Lifschitz, editor, Artificial In-

telligence and Mathematical Theory of Computation: papers in honor of John

McCarthy. Academic Press, 1991.

24

[SM91] M. Siegel and S. Madnick. A Metadata Approach to Resolving Semantic Conflicts.

In Proceeding of the 17th International Conference on Very Large Data Bases,

September 1991.

[SSR92] E. Sciore, M. Siegel, and A. Rosenthal. Context interchange using meta-attributes.

In Submission to the 18th International Conference on Very Large Data Bases,

August 1992.

[Te87] M. Templeton and et al. Mermaid - a front-end to distributed heterogeneous

databases. In Proceedings of the IEEE, volume 57, pages 695-708, 1987.

[Tem89] M. Templeton. Schema integration in mermaid. In Position Papers: NSF Work-

shop on Heterogeneous Databases, December 11-13, 1989.

[Tho88] G. M. Thomson, D. M. Davies. Introduction: Memory in Context: Context in

Memory. In Davies G. M. and Thomson D. M., editors. Memory in Context:

Context in Memory. John Wiley & Sons Ltd., 1988.

25

3 9080 00932 7294

5 197

Date Due

Lib-26-67

